
Innovation for Exascale computing

Exascale computing is a goal in itself for some basic science. It is also a way to push to                                   
the limit existing practices. This way, new tools will be developed that will be very useful for                               
large scale (not necessarily exascale) computing. Thus I will address scientific computing                     
not only from the exascale point of view. What is behind exascale computing is that the                             
number of cores is not the limit but data transfer between cores and thus the way we use all                                   
these cores. This raises several issues. I will start with two topics that, to my opinion, are                               
underestimated. Then, I will finish with the computer science aspect that I guess other                         
authors will address as well.

Books are fundamental as a basis for paradigm changes. More than scientific papers.
Exascale challenge can only be solved with breakthroughs. Incremental solutions are not                     
enough. Innovations are first published as papers in journals. Then from these seminal                       
papers, many other papers are published that develop and refine the original idea. At some                           
point, this literature becomes very numerous. Due to space constraints, technical but                     
important analysis can not be given or are referred to other papers which refer to other                             
papers and so on. When such a point is reached, it becomes very difficult to have a clear                                 
view of what is going on. Limitations of the original approach get blurred. In short,                           
informations are too much scattered among papers and are difficult to analyze. Then, a                         
book written by one (or two or three) author that gives a unified selfcontained view to this                               
specific area is a real bonus. The book structures the results of the literature. Based on this                               
material, a critical analysis is made possible and it becomes possible to propose new                         
paradigms. From my own experience on coarse space for parallel solvers, I can testify that                           
the book by O. Widlund on domain decomposition methods was a key element in our                         
capacity to propose new coarse space constructions that are adaptive to heterogeneities.                     
Books take time to write and one way or another should be found to encourage scientists to                               
write them since they are the basis for paradigm changes.

Numerical simulations in the hands of end users
Complexity of simulations has greatly increased and that at the same time the end user of                             
simulation codes is less and less aware of the methods that are used. First computations                           
were made on quite small structured twodimensional grids with a simple physics where it                         
was easy to have everything under the control of one scientist. Now, computations are                         
made on large unstructured threedimensional grids with complex multiphysics. Somehow,                 
this is a measure of the success of scientific computing/computational physics. But the                       
consequence is that it is virtually impossible for one person to control the whole thing. The                             
need for automating as much as possible the whole simulation process can only rely on                           
mathematical analysis. An example of such successful automation is the time step                     
adaptation used classically in the numerical solving of ordinary differential equations                   



(ODE), see Matlab routines ode45 or ode23. Although partly heuristic (and as such not yet                           
perfect), these algorithms are essentially based on rigorous analysis of numerical schemes                     
for ODEs. A key feature is that they apply to arbitrary ODEs. All efforts pointing to this                               
direction for solving partial differential equation (PDE) based models are the future of                       
scientific computing: a posteriori error control, adaptive mesh refinement, adaptive time                   
step for PDE, automatic monitoring of a given simulation, adaptive iterative solvers, … .                         
All these methods should have the strongest mathematical foundation since it is the only                         
way to ensure both robustness and generality. Many efforts already exist in this direction                         
but what is sometimes lacking is to have tools that apply to arbitrary PDEs and not to a                                 
specific PDE.
Another important aspect of having non specialists of numerical analysis performing more                     
and more complex simulations is to give them the possibility to express their own physics                           
without a priori limitation and at the same time give them powerful automated tools. A kind                             
of Matlab for PDE is needed. Domain specific language (DSL) for PDE based models, such                           
as FreeFem++, Feel++ or Fenics, enable end users to do such things. The development of                           
such tools is a very difficult mix of software engineering and mathematical tools to abstract                           
numerical schemes. Such projects should receive long term funding as PETSC has for                       
instance.

Wishlist addressed to computer scientist for exascale
As any applied mathematician involved in high performance computing, I have a wishlist                       
which is shared by many others I guess. I see the need for genuinely parallel operating                             
systems. This is only way to really suppress bottlenecks in large scale simulations.                       
Programing languages must give a way to express data locality. Task based programing                       
will also help a lot. As for fault tolerance, it is important to develop algorithms and                             
programing practices (systematic use of trycatch) that allow for hardware failures.                   
Anyway, even if a small part of a program is not fault tolerant, it is enough to have the                                   
whole program not fault tolerant. Thus, the practical solution to this problem will come from                           
the development of RAIC (redundant array of independent cores) analogous what has been                       
done for storage with RAID. The machines we have access to are somehow flat and create                             
artificial bottlenecks even for basic operations such as scalar product of two vectors.                       
Processors have to be hierarchical from their initial design. Of cours, all algorithms must be                           
rethought in terms of parallelism and a modern “parallel Knuth” is needed.


